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Abstract
We investigate the collisional dynamics of two vortex dipoles in a uniform two-dimensional
Bose–Einstein condensate. It is found that the dynamics are deeply related to the moving
directions and sizes of the initial vortex dipoles. For the oblique collisions of two vortex dipoles
with the same size, we find that the vortices in the two initial vortex dipoles recombine into two
new vortex dipoles which scatter in the opposite directions. For the catching-up processes of two
vortex dipoles with different size, we find that the faster vortex dipole speeds up and passes
through the slower vortex dipole. If the size of the vortex dipoles are small, we also observe
vortex annihilation and vortex resurrection. The corresponding parameter ranges of different
collisional dynamics are discussed.
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1. Introduction

Vortices are persistent circulating flow patterns, which have
been observed in most branches of physics such as classical
hydrodynamics [1], optical physics [2], superfluids [3] and
superconductors [4], as well as cold atomic physics [5–21] .
Vortices with opposite circulation move parallel to each other
forming a so-called vortex dipole (VD) [22–24]. Although a
single vortex carries angular momentum, VDs can be con-
sidered as basic topological structures that carry linear
momentum in stratified or two-dimentional fluids [25]. VDs
are widespread in classical fluid flows, involving ocean cur-
rents [26] and soap films [27], exciton-polariton condensate in
a semiconductor cavity [28, 29], superfluid helium [30] and
ultracold atomic gases. The creation and annihilation of VDs
are at the heart of chaotic flows [25] and superfluid phe-
nomena. A quantitative study on the dynamics of VDs will
contribute to a broader and deeper understanding of non-
equilibrium physics, such as quantum turbulence [30–35],

Berezinskii–Kosterlitz–Thouless transition [36–38], and
phase transition dynamics [39–42].

Dynamics of VDs has been recently observed in highly
oblate BECs [22] . While in a uniform superfluid the VD
propagates with a constant velocity, in an inhomogeneous
system it has complicated trajectory [22, 43–45] or even
remains stationary [16, 43]. The vortex–antivortex annihila-
tion has also been discussed in [46–51]. Many important
works have been performed on the collisional dynamics of
VDs in BECs [20, 52, 53]. In [54], Smirnov and his colla-
borators studied the scattering of VD by a single vortex in a
uniform BEC. The results show that the VD was scattered
over large angles, in agreement with earlier calculations [55].
In [56], Griffin et al studied VD scattering by a fixed impurity
potential (whose depth and size is similar to the depth and
size of a quantum vortex but without circulation) in a BEC,
and compared it with the scattering induced by a target in the
form of vortex. In [20], the head-on collision of two VDs in a
harmonic trap was studied, and the vortex recombination and
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annihilation were observed by changing the radial position of
the initial VDs.

In our previous work [57], we analyzed in detail the
parallel collisions of two VDs by varying the parameters, and
we identified three general modes, involving the vortex
recombination mode, the encircling mode and the flyby mode.
However, as far as we know, the effects of the angle
θbetween the moving directions of two initial VDs on the
collisional dynamics have not been studied yet. In this paper,
we focus on the dynamics of oblique collisions and catching-
up processes of two VDs. Some interesting phenomena, such
as vortex recombination, vortex annihilation and vortex res-
urrection, are predicted. The changes of the velocity and size
of the VDs in the collision processes are discussed. We also
show the parameter ranges for different collisional dynamics
of the VDs.

The rest of the paper is organized as follows. In section 2,
we provide the model and numerical method. In section 3, we
investigate the dynamics of oblique collision and catching-up
process of two VDs. In section 4, we further discuss the
reliability of the numerical simulations. Finally, we sum-
marize and give concluding remarks in section 5.

2. The theoretical model and numerical method

In superfluids, a VD propagates with velocity v mdVD  ( ),
where m is the atomic mass and d is the separation between
the vortex and antivortex [52]. The energy EVD of a VD is

calculated by E lnn

m

d

aVD
2 0

2

0

~ p , where n0 is the atomic

density distribution [52]. In a uniform BEC, d is constant in
time. In a non-uniform BEC, a VD traveling towards a higher
density region will reduce its separation due to energy con-
servation [50]. So the collisional dynamics of VDs are totally
different for uniform and non-uniform BECs. For simplicity,
we choose the uniform flat potential to investigate the oblique
collisions and catching-up processes of two VDs.

In the weak interaction limit, the quantum dynamics of a
BEC is determined by the Gross–Pitaevskii (GP) equation.
We restrict the problem to the two-dimensional plane and

consider a uniform cylindrical trap at zero temperature. We
model the cylindrical well with V rr r1

2 0= a( ) (∣ ∣ ) , where r0
is the effective radius of the system and αis a parameter
which defines the steepness of the trap walls [50]. In the limit
of infinite steepness a  ¥( ) it approaches a cylindrically
symmetric well with radius r0. There are a variety of tech-
niques for experimentally producing such steep-walled trap-
ping potentials [58, 59]. In this paper, we set α=100 and
r a200 0= to ensure that the condensate is completely con-
fined in the well. Here a0is a scaling length parameter rele-
vant to the size of the well. The corresponding characteristic
frequency is mac 0

2w = . After rescaling the parameters by
making the substitution t tcw , ar r 0 , and

a0
3 2y y [60–63], we can obtain the reduced dimen-

sionless GP equation
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where the interaction strength, c Na a4 s 0p= , is written in
terms of the s-wave scattering length as, and the total atomic
number N. Following a previous work [64], we set
c=10 399. In order to obtain two initial VDs(1, 2 and 3, 4
in figures 1(a) and (b)), we first get the ground state of the
system using the imaginary-time method. Then we imprint
two VDs in the condensate by multiplying the ground state
wave function by a phase factor exp ik k

4 qP ( ), where
x y s y y x x, arctank k k kq = - -( ) [( ) ( )]. Here, (xk, yk) defines

the position of the kth vortex, and the sign sk defending the
direction of circulation. After the vortex imprinting, the wave
function is evolved further in imaginary time for 0.05 c

1w- to
establish the structure of vortex cores. Experimentally, vor-
tices can be seeded into the system by employing the phase
imprinting techniques [65–67]. The initial positions of the
two VDs are shown in figure 1. The red solid circles represent
the vortices, and the blue solid circles represent the anti-
vortices. The sizes of the two VDs are d12 and d34, respec-
tively. In figure 1(a), θrepresents the angle between the
moving directions of the two initial VDs. The initial coordi-
nates (xk, yk) of the kth vortex vary from case to case, as we
change the collision angle θ. Figure 1(b) is the schematic

Figure 1. Schematic representation of the interaction of two VDs for the case of (a) oblique collisions and (b) catching-up processes,
respectively. Initially, the vortices 1, 3 (red) and the antivortices 2, 4 (blue) are separated by the distances d12 and d34. Here θ represents the
angle between the moving directions of the two initial VDs.
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diagram of the catching-up phenomenon of two VDs, i.e. the
case of 0q = .

We numerically solve equation (1) using the time-
splitting Fourier pseudospectral method [68]. The simulations
are carried out in a region x y a a, 25 , 250 0Î - ´( ) [ ]

a a25 , 250 0-[ ] with a refined grid of 768×768 nodes, which
is sufficient to achieve grid independence. The time step is set
byΔ t=0.001. The trajectories of the vortices can plotted by
searching for their phase signatures [69].

3. Numerical results

3.1. Oblique collision dynamics of two vortex dipoles

We first study the oblique collision of two VDs with the same
size d d a312 34 0= = , which are initially located symme-
trically on the x -axis with the angle θ=2π /3 between their
moving directions, as shown in figure 2(a). When t=0, the
four vortices of the two VDs are placed at x y,1 1 =( )

a a2.12 , 6.670 0-( ) (red circle), x y a a, 4.72 , 5.172 2 0 0= -( ) ( )
(blue circle), x y a a, 4.72 , 5.173 3 0 0= - -( ) ( ) (red circle) and
x y, 2.12, 6.674 4 = - -( ) ( ) (blue circle), respectively.

The trajectories of the vortices and antivortices at a time
interval of t 40D = are shown in figure 2(b) by the red lines
and blue lines, respectively. It is found that the vortices from
the two initial VDs (1, 2 and 3, 4) recombine into new VDs
(2, 3 and 1, 4) which scatter in the opposite directions. This
can be understood as follows. The motion of a vortex depends

on the flow pattern of its nearby vortices [70]. This means that
the vortices are usually aware of each other [71]. When the
two VDs reach their minimum distance, the antivortex 2 is
closer to the vortex 3 than the antivortex 4, thus the effect of
the antivortex 2 on the vortex 3 plays a major role. As a result,
while the antivortex 2 and the vortex 3 constitute a new VD
which propagating in the −x direction, the vortex 1 and the
antivortex 4 form another new VD which propagating in the
+x direction. In figures 2(c) and 2(d), we also plot the
corresponding phase distributions with the singular points
picking the positions of the vortices and antivortices.

The relation between the sizes of the VDs and the col-
lision angle θ is shown in figure 3. With the angle θ

decreasing from π to 18p , while the size d23¢ of the VD (2, 3)
gets smaller, the size d14¢ of the VD (1, 4) gets larger. This can
be understood by noting that the total momentum before the
oblique collision is in the +x direction, and the system with
smaller angle θ has larger total momentum. It is also known
that a bigger VD has larger momentum [53, 72]. So after the
oblique collision, we have d d14 23¢ > ¢ , and the smaller angle θ
makes bigger size of d14¢ and smaller size of d23¢ .

For the oblique collisions of two VDs with the same size,
the size of the VD (2, 3) generated by the vortex recombi-
nation is always smaller than those of the initial VDs (1, 2 and
3, 4). A natural question is whether VD annihilation can occur
when the sizes of the initial VDs is small enough. And if so,
what is the critical size of the initial VDs. To answer this
question, we have performed numerical simulations on the
collisions of two VDs with different sizes and moving
directions. Specially, when d d a1.2512 34 0= = and θ=π/3,
from the trajectories of the vortex and antivortex in a time
interval Δ t=16, as shown in figure 4(b), one finds that after
the oblique collision while the vortex 1 and antivortex 4
combine into a new VD moving in the +x direction, the
antivortex 2 and vortex 3 annihilate and generate a dark
soliton, as shown in the dashed square of figure 4(b). From
the phase distributions, one can see that the phase singula-
rities are no longer discernible [50] in the region of dark
soliton. Figure 5 shows the parameter-space phase diagram of
the dynamics on vortex recombination and vortex

Figure 2. Vortex recombination in the oblique collision dynamics.
The positions of the vortices and antivortices are labeled by red and
blue circles, respectively. (a) The initial coordinates of the vortices
are chosen as x y a a, 2.12 , 6.671 1 0 0= -( ) ( ) (red circle), x y,2 2 =( )

a a4.72 , 5.170 0-( ) (blue circle), x y a a, 4.72 , 5.173 3 0 0= - -( ) ( ) (red
circle) and x y a a, 2.12 , 6.674 4 0 0= - -( ) ( ) (blue circle). Then we
have d d a312 34 0= = and θ=2π /3. (b) The trajectories of the
vortices (red lines) and antivortices (blue lines) at a time interval of

t 40 c
1wD = - . The arrows indicate the directions of the VD

propagation after the vortex recombination. The corresponding
phase distributions for t=0 and t 40 c

1w= - are shown in (c) and (d).

Figure 3. The sizes of the VDs as a function of the collision angle q
after the vortex recombination. The size of the initial VDs (1, 2 and
3, 4) are fixed at d d a31,2 3,4 0= = . The sizes of the two new VDs (1,
4 and 2, 3) are represented by black squares (d14¢ ) and green triangles
(d23¢ ), respectively.
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annihilation. It can be found that VD annihilation usually
occurs with smaller angle θ and smaller size of the VDs.

3.2. Catching-up dynamics of two vortex dipoles

We next investigate the catching-up dynamics (θ=0) of two
VDs with different sizes. Specially, we consider two VDs
with the four vortices initially located on x y,1 1 =( )

a a12 , 1.30 0-( ) (red circle), x y a a, 12 , 1.32 2 0 0= - -( ) ( )
(blue circle), x y a a, 5 , 23 3 0 0= -( ) ( ) (red circle) and
x y a a, 5 , 24 4 0 0= - -( ) ( ) (blue circle), as shown in

figures 6(a1)–(a2). In this case, we have d a2.612 0= and
d a434 0= . It is found that when the VD (1, 2) is about to
pass through the VD (3,4 ), while the size of the VD (1, 2)
becomes smaller, that of the VD (3, 4) becomes larger with
d a1.0712 0= and d a5.3734 0= , as shown in figures 6(b1)–
(b2). This can be understood qualitatively as follows. When
VD (1, 2) and VD (3, 4) get closer, the vortex-vortex inter-
action becomes more obviously. The flow pattern of the
vortex1 is anticlockwise, which tends to drive the vortex 3 in
the +y direction. In contrast, the flow pattern of the antivortex
2 is clockwise, which tends to drive the antivortex 4 in the y-
direction. As a result, the vortex 3 and the antivortex 4
become away from each other. Besides, when the VD (1, 2)
has passed through the VD (3, 4), while the flow pattern of
the vortex 1 tends to drive the vortex 3 in the y- direction,
that of the vortex 2 tends to drive the vortex 4 in the +y
direction. As a result, the vortex 3 and antivortex 4 become
close to each other again, as shown in figures 6(c1)–(c2).
Similarly, in the catching-up process, the distance between
the vortex and the antivortex in the VD (1, 2) firstly increases
and then decreases. This can be obviously seen from the
trajectories of the vortex and the antivortex, as shown in
figure 6(c1).

By choosing a smaller size of the VD (1, 2), one can find
the dynamics of vortex annihilation and vortex resurrection.
Without loss of generality, we choose d a1.212 0= and

Figure 4. Vortex annihilation in the oblique collision dynamics. (a)
The initial coordinates of the vortices are chosen as x y,1 1 =( )

a a10.07 , 6.530 0-( ) (red circle), x y a a, 10.69 , 5.452 2 0 0= -( ) ( ) (blue
circle), x y a a, 10.69 , 5.453 3 0 0= - -( ) ( )(red circle) and
x y a a, 10.07 , 6.534 4 0 0= - -( ) ( ) (blue circle). Then we have

d d a1.2512 34 0= = and θ=π /3. (b) The trajectories of the vortices
(red lines) and antivortices (blue lines) at a time interval of

t 16 c
1wD = - . The antivortex 2 and the vortex 3 annihilate and

generate a dark soliton, as shown in the dashed square. The arrows
indicate the propagation directions of the VD and dark soliton after
collision. The corresponding phase distributions for t=0 and
t 16 c

1w= - are shown in (c) and (d).

Figure 5. Parameter-space phase diagram of the oblique collision
dynamics. While the black squares indicate the range of vortex
recombination, the red diamonds indicate the range of vortex
annihilation.

Figure 6. Catching-up dynamics of two vortex dipoles with a large
vortex distance. (a1) The initial coordinates of the vortices are
x y a a, 12 , 1.31 1 0 0= -( ) ( ) (red circle), x y a a, 12 , 1.32 2 0 0= - -( ) ( )
(blue circle), x y a a, 5 , 23 3 0 0= -( ) ( ) (red circle) and
x y a a, 5 , 24 4 0 0= - -( ) ( ) (blue circle). The vortex distances of the
VDs are d a2.612 0= and d34=40. (b1) The positions of the vortices
at t 14.4 c

1w= - . (c1) The trajectories of the vortices (red lines) and
antivortices (blue lines) at a time interval of t 40 c

1wD = - . In figures
(a1)–(c1), the arrows indicate the propagation directions of the VDs.
The corresponding phase distributions for t=0, t 14.4 c

1w= - and
t 40 c

1w= - are shown in (a2), (b2) and (c2).
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d a434 0= . The catching-up process is shown in figure 7. As
the VD (1, 2) approaches the VD (3, 4), the vortex 1 and
antivortex 2 get closer, then annihilate and generate a dark
soliton, as shown in the dashed square of figures 7(b1)–(b2).
Interestingly, we find that the vortices annihilation is tem-
porary, and after passing through the VD (3, 4), the dark
soliton revives the vortex dipole structure again. The vortex
annihilation and resurrection can be visibly distinguished
from the trajectories of the phase singularity, and when the
vortices annihilate, the phase singularity will correspondingly
disappear, as shown in figure 7(c1).

By further decreasing the size of the VD (3, 4), one can
observe the permanent annihilation of the VD (1, 2). Figure 8
show the dynamics for the case of initial distances
d a1.212 0= and d a334 0= . When the VD (1, 2) approaches
the VD (3, 4), vortex 1 and antivortex 2 annihilate and gen-
erate a dark soliton, as shown in figures 8(b1)–(b2). Different
from the case of figure 7, the vortices annihilation is perma-
nent, and the dark soliton does not revive the dipole structure
again, as shown in figures 8(c1)–(c2).

From figures 6–8, one can find that the catching-up
dynamics depends on the initial sizes of the VDs (d12 and
d34). Figure 9 shows the parameter-space phase diagram of
the catching-up dynamics. While the VD (1, 2) permanently
annihilates in the region with small enough d12 and d34, the
temporarily annihilated vortices can revive in the region with

Figure 7.Vortex annihilation and vortex resurrection in the catching-
up dynamics. (a1) The initial coordinates of the vortices are
x y a a, 12 , 0.61 1 0 0= -( ) ( ) (red circle), x y a a, 12 , 0.62 2 0 0= - -( ) ( )
(blue circle), x y a a, 5 , 23 3 0 0= -( ) ( ) (red circle) and
x y a a, 5 , 24 4 0 0= - -( ) ( )(blue circle). The initial vortex distances are

d a1.212 0= and d a434 0= . (b1) The vortex 1 and the antivortex 2
temporarily annihilate at t=5.1 and generate a dark soliton, as
shown in the dashed square. (c1) The trajectories of the vortices (red
lines) and antivortices (blue lines) at a time interval of t 15 c

1wD = - .
The VD (1, 2) firstly annihilates and then revives again. In figures
(a1)–(c1), the arrows indicate the propagation directions of the VDs
and the dark soliton. The corresponding phase distributions for
t=0, t 5.1 c

1w= - and t 15 c
1w= - are shown in (a2), (b2) and (c2).

Figure 8. Vortex permanent annihilation in the catching-up
dynamics. (a1 ) The initial coordinates of the vortices are
x y a a, 12 , 0.61 1 0 0= -( ) ( ) (red circle), x y a a, 12 , 0.62 2 0 0= - -( ) ( )
(blue circle), x y a a, 5 , 1.53 3 0 0= -( ) ( ) (red circle) and
x y a a, 5 , 1.54 4 0 0= - -( ) ( ) (blue circle). The initial vortex distances
are d a1.212 0= and d a334 0= . (b1) The vortex 1 and the antivortex
2 permanently annihilate at t=5.4 and generate a dark soliton, as
shown in the dashed square. (c1) The trajectories of the vortices (red
lines) and antivortices (blue lines) at a time interval of t 13 c

1wD = - .
In figures (a1)-(c1), the arrows indicate the propagation directions of
the VDs and dark soliton. The corresponding phase distributions for
t=0, t 5.4 c

1w= - and t 13 c
1w= - are shown in (a2), (b2) and (c2).

Figure 9. Parameter-space phase diagram of the catching-up
dynamics. The red circles indicate that the VD (1, 2) permanently
annihilates. The green triangles indicate that the VD (1, 2)
temporarily annihilates and revives again. The blue squares indicate
that the VD (1, 2) does not annihilate when passing through the
VD(3, 4). The black crosses indicate that the VD (1, 2) can not catch
up the VD(3, 4).
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middle sizes of the VDs. In the region with larger enough d12
and d34, no vortex annihilation occurs.

It has been previously indicated that the VD annihilation
in a uniform system is a many-vortex process free from dis-
sipation [50]. A VD can reduce its separation via a long-range
interaction with a third catalyst vortex. By giving up some of
its energy to this catalyst vortex, the vortex–antivortex can
fuse and form a dark soliton [50]. In contrast, in the present
system the VD annihilation results from its interaction with
another VD. The VD (1, 2) reduce its separation by trans-
ferring its energy to VD (3, 4). Before the VD (1, 2) passing
through the VD (3, 4), the energy of the VD (1, 2) is first
transmitted to the VD (3, 4). And after passing through the
VD (3, 4), the VD (3, 4) transfers energy back to the VD (1,
2). This is the reason why the VD can annihilate and revive.
In addition, during the catching-up process, there exists some
energy lost due to sound-wave emission [34, 55, 56]. When
the size of the VD (1, 2) is small enough, after passing
through the VD (3, 4), the rest energy of the VD (1, 2) is not
enough to form a new vortex dipole structure again. This is
the reason why the VD (1, 2) permanently annihilates.
Besides, when the original size d12 is large enough and no
vortex annihilation happens during the catching-up process,
the VD (1, 2) will get smaller size and faster velocity after
passing through the VD (3, 4) because of sound-wave
emission.

4. The effective particle model

In this section, we would like to demonstrate that the oblique
collision and catching-up dynamics can also be well described
by the effective particle model [19, 45, 70, 73, 74]. When the
distances of the vortices are larger than the size of the vortex
core, a small cluster of n vortices can be treated as classical
particles, whose kinematic equations in a uniform background
take the form

x b S
y y

r
, 2i

k i

n

k
i k

ik
2å= -
-

¹

˙ ( )

y b S
x x

r
i n, 1 ... , 3i

k i

n

k
i k

ik
2å=
-

=
¹

˙ ( )

where (xi, yi) are the coordinates, Si is the charge of the ith
vortex, and r x x y yik i k i k

2 2= - + -( ) ( ) denotes the
separation between the vortex i and vortex k. The topological
charge of the ith vortex is S 1i =  with the positive (negative)
sign referring to counter-clockwise (clockwise) circulation as
viewed from the positive z axis [70]. Here b is a positive
numerical constant, and in the case of unit charge vortices,
b≈0.975 was found to yield good agreement with the results
obtained in the framework of GP simulation [73]. This type of
modeling has been shown to be successful in describing various
vortex dynamics [19, 45, 70, 73, 74]. It is convenient to rewrite
the equations (2) and (3) according to our present system by
setting n=4 and S S S S 11 2 3 4= - = = - = . If we choose the
same initial coordinates of the vortices as those of figures 2 and
6, we find that the trajectories obtained by the effective particle

model agree very well with those obtained by the GP simula-
tions, as shown in figure 10.

5. Conclusions

We have investigated the oblique collision and catching-up
dynamics of two vortex dipoles in a uniform Bose–Einstein
condensate. We find that the collision dynamics are deeply
related to the moving directions and the sizes of the initial
vortex dipoles. For the oblique collisions of two vortex
dipoles with the same size, we observe recombination and
annihilation of the vortex dipoles. For the catching-up pro-
cesses of two vortex dipoles with different sizes, we observe
vortex temporary annihilation and resurrection, as well as
vortex permanent annihilation. The corresponding parameter-
space phase diagrams of the dynamics are given by numerical
simulations. The oblique collision and catching-up dynamics
of vortex dipoles discussed here usually occurs in systems of
quantum turbulence. Our present study may contribute to a
further understanding of the non-equilibrium physics in
quantum fluids.
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